自动控制网—学习自动控制技术电气自动化技术从这里开始!
当前位置:自动控制网 > 基础知识 >
  • NN自适应控制 日期:2015-08-26 09:40:20 点击:864 好评:0

    与常规自适应控制一样,NN自适应控制也分为两类,即自校正控制(STC)和模型参考自适应控制(MRAC)。STC和MRAC之间的差别在于:STC根据受控系统的正和/或逆模型辨识结果直接调节控制器的内部参数,以期能够满足系统的给定性能指标;在MRAC中,闭环控制系统的期望性能...

  • :NN直接逆模型控制 日期:2015-08-26 09:40:04 点击:546 好评:0

    顾名思义,NN直接逆控制采用受控系统的一个逆模型,它与受控系统串接以便使系统在期望响应(网络输入)与受控系统输出间得到一个相同的映射。因此,该网络(NN)直接作为前馈控制器,而且受控系统的输出等于期望输出。本控制方案已用于机器人控制,即在Miller开发的CM...

  • 神经控制NN学习控制 日期:2015-08-26 09:39:18 点击:733 好评:0

    由于受控系统的动态特性是未知的或者仅有部分是已知的,因此需要寻找某些支配系统动作和行为的规律,使得系统能被有效地控制。在有些情况下,可能需要设计一种能够模仿人类作用的自动控制器。基于规则的专家控制和模糊控制是实现这类控制的两种方法,而神经网络(...

  • 小脑模型联接控制(CMAC)网络 日期:2015-08-26 09:38:47 点击:558 好评:0

    CMAC网络可视为一种具有模糊联想记忆特性监督式(有导师)前馈神经网络,CMAC由一系列映射组成: (1) 式中,S={输入矢量},M={中间变量},A={联想单元矢量},u=CMAC的输出h(S),gofoe 上述映射(变换)可说明于下: (1)输入编码(SM映射) (2)地址计算(MA映射) (3)输出...

  • Elman and Jordan网络 日期:2015-08-26 09:38:31 点击:766 好评:0

    Elman网络和Jordan网络具有与MLP网络相似的多层结构。在这两种网络中,除了普通的隐含层外,还有一个特别的隐含层,有时称为上下文层或状态层;该层从普通隐含层(对于Elman网)或输出层(对于Jordan网)接收反馈信号。Jordan网还对上下文层的每个神经元进行自反馈连...

  • Hopfield网络 日期:2015-08-26 09:37:58 点击:580 好评:0

    Hopfield网络是一种典型的递归网络,Hopfield网络的训练只有一步,网络的 被直接指定如下: (1) 式中, 为从神经元i至神经元j的连接权值, (可为+1或-1)是c类训练输入模式的第i个分量,p为类数,N为神经元数或输入模式的分量数。当一种未知模式输至此网络时,设置其...

  • Kohonen网络 日期:2015-08-26 09:37:40 点击:560 好评:0

    Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一为输出层。训练一个Kohonen网络包含下列步骤: (1)对所有输出神经元的参考矢量预置小的随机初值。 (2)供给网络一个训练输入模式。 (3)确定获胜的输出神经元,即参考矢量最接近输...

  • 学习矢量量化(LVQ)网络 日期:2015-08-26 09:37:24 点击:761 好评:0

    学习矢量量化(LVQ)网络由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出神经元与隐含神经元的不同组相连接。隐含-输出神经元间连接的权值固定为1。输入-隐含神经元间连接的权...

  • 自适应谐振理论(ART)网络 日期:2015-08-26 09:37:07 点击:731 好评:0

    自适应谐振理论(ART)网络具有不同的版本,即用于处理二元输入的ART-1版本和能够处理连续值输入的ART-2版本。 一个ART-1网络含有两层,一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。自底向上连接至一个输出神...

  • 数据群处理方法(GMDH)网络 日期:2015-08-26 09:35:40 点击:601 好评:0

    GMDH网络中的每个神经元通常有两个输入( 和 ),并产生一个输出y,它是这些输入的二次组合,即 (1) 训练GMDH网络包含下列过程:从输入层开始构造网络,调整每个神经元的权值,增加层数直至达到映射精度为止。 第一层的神经元数决定了可能得到的外部输入数。对于一对...

  • 多层感知器(MLP) 日期:2015-08-26 09:34:36 点击:684 好评:0

    多层感知器可能是最著名的前馈网络,一个三层MLP包括输入层、中间(隐含)层和输出层。输入层的神经元只起到缓冲器的作用,把输入信号 为一称为学习速率的参数, 之后,进行求和,并计算出输出 作为该和的f函数。反向传播算法是一种最常采用的MLP训练算法,它给出神经...

  • 人工神经网络的典型模型 日期:2015-08-26 09:34:05 点击:516 好评:0

    迄今为止,有30多种人工神经网络模型被开发和应用。根据W.T.Illingworth提供的综合资料,最典型的ANN模型(算法)及其学习规则和应用领域如表1所列。 表1人工神经网络的典型模型...

  • 人工神经网络的主要学习算法 日期:2015-08-26 09:33:40 点击:1241 好评:0

    (1)有师学习 有师学习需要有个老师或导师来提供期望或目标输出信号。 (2)无师学习 无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚集。无师学习算法的例子包括Koh...

  • 人工神经网络的基本特性和结构 日期:2015-08-26 09:33:06 点击:1037 好评:0

    人工神经网络的结构基本上分为两类,即递归(反馈)网络和前馈网络,简介如下。 (1)递归网络 在递归网络中,多个神经元互连以组织一个互连神经网络,如图所示。有些神经元的输出被反馈至同层或前层神经元,递归网络又叫做反馈网络。Hopfield网络,Elmman网络和Jordan...

  • 神经元及其特性 日期:2015-08-26 09:32:26 点击:533 好评:0

    和神经生理学类似,连接机制结构的基本处理单元称为神经元。每个构造起网络的神经元模型模拟一个生物神经元,如图1所示。 图1神经元模型 该神经元单元由多个输入 ,i=1, 2, ..., n和一个输出y组成。中间状态由输入信号的权和表示,其输出为: (1) 式中, 为神经元单...

  • 首页
  • 上一页
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 下一页
  • 末页
  • 1111658
栏目列表
推荐内容