自动控制网—学习自动控制技术电气自动化技术从这里开始!

多层NN控制

时间:2015-08-26 09:41来源:www.eadianqi.com 编辑:自动控制网
多层神经网络控制器基本上是一种前馈控制器,该系统存在两个控制作用:前馈控制和常规馈控制。前馈控制由神经网络实现;前馈部分的训练目标在于使期望输出与实际装置输出间的偏差为最

    多层神经网络控制器基本上是一种前馈控制器,该系统存在两个控制作用:前馈控制和常规馈控制。前馈控制由神经网络实现;前馈部分的训练目标在于使期望输出与实际装置输出间的偏差为最小。该误差作为反馈控制器的输入。反馈作用与前馈作用被分别考虑,特别关注前馈控制器的训练而不考虑反馈控制的存在。已提出多层NN控制器的三种结构:间接结构、通用结构和专用结构。
1.间接学习结构
    间接多层NN控制结构含有两个同样的神经网络,用于训练。在本结构中,每个网络作为一个逆动态辨识器。训练的目标是要从期望响应d中找到一个合适的装置控制u。以网络Ⅰ和网络Ⅱ间的差为基础来调整权值,使得误差e为最小;如果能够训练网络Ⅰ使得y=d,那么,u=。不过,这并不能保证期望输出d与实际输出y之间的差别为最小。
2.通用学习结构
    多层NN控制的通用学习结构,它使e=d-g为最小。该网络被训练使得装置输入u与网络输出间的差别为最小。在训练时,u应当处在这样的范围内使得y复盖期望输出d。训练之后,如果某一期望输出d被送至网络,那么该网络就能够为受控装置提供一个合适的u。本结构的局限性是:一般无法知道哪一个u对应于期望输出d,因而网络不得不在u的大范围内进行训练以求经过学习能够使装置输出y包括期望值d。 自动控制网www.eadianqi.com版权所有
3.专用学习结构
    当神经网络训练时,期望输出d是该网络的输入。采用误差反向传播方法,经过训练使期望输出d与装置的实际输出y之间的差别e为最小。因此,不仅能够期望得到良好的装置输出,而且训练能够在期望输出范围内执行,而不需要知道装置的合适输入范围。

本文来自www.eadianqi.com

本文已影响